4.8 Article

Spontaneous Vegetation Encroachment upon Bauxite Residue (Red Mud) As an Indicator and Facilitator of In Situ Remediation Processes

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 47, Issue 21, Pages 12089-12096

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es402924g

Keywords

-

Funding

  1. Australian Postgraduate Award
  2. UWA Geoffrey Kennedy Research Travel Award
  3. Minerals and Energy Research Institute of Western Australia
  4. Alcoa of Australia Ltd.
  5. BHP Billiton Worsley Alumina

Ask authors/readers for more resources

The spontaneous colonization of a bauxite residue (alumina refining tailings) deposit by local vegetation in Linden, Guyana, over 30 years, indicates that natural weathering processes can ameliorate tailings to the extent that it can support vegetation. Samples were collected from vegetated and unvegetated areas to investigate the relationships between bauxite residue properties and vegetation cover. Compared to unvegetated areas, bauxite residue in vegetated areas had lower pH (mean pH 7.9 vs 10.9), lower alkalinity (mean titratable alkalinity 0.4 vs 1.4 mol H+ kg(-1)), lower electrical conductivity (mean EC 0.3 vs 2.1 mS cm(-1)), lower total Al (mean Al2O3 19.8 vs 25.8% wt) and Na (mean Na2O 0.9 vs 3.7% wt), and less sodalite and calcite. Accumulation of N, NH4+, and organic C occurred under vegetation, demonstrating the capacity for plants to modify residue to suit their requirements as a soil-like growth medium. Aeolian redistribution of coarse grained tailings appeared to support vegetation establishment by providing a thin zone of enhanced drainage at the surface. Natural pedogenic processes may be supplemented by irrigation, enhanced drainage, and incorporation of sand and organic matter at other tailings deposits to accelerate the remediation process and achieve similar results in a shorter time frame.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available