4.8 Article

Engineering Arsenic Tolerance and Hyperaccumulation in Plants for Phytoremediation by a PvACR3 Transgenic Approach

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 47, Issue 16, Pages 9355-9362

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es4012096

Keywords

-

Funding

  1. National Science Foundation Council of China [30670171, 31070449]

Ask authors/readers for more resources

Arsenic (As) pollution is a global problem, and the plant-based cleanup of contaminated soils, called phytoremediation, is therefore of great interest. Recently, transgenic approaches have been designed to develop As phytoremediation technologies. Here, we used a one-gene transgenic approach for As tolerance and accumulation in Arabidopsis thaliana. PvACR3, a key arsenite [As(III)] antiporter in the As hyperaccumulator fern Pteris vittata, was expressed in Arabidopsis, driven by the CaMV 35S promoter. In response to As treatment, PvACR3 transgenic plants showed greatly enhanced tolerance. PvACR3 transgenic seeds could even germinate and grow in the presence of 80 mu M As(III) or 1200 mu M arsenate [As(V)] treatments that were lethal to wildtype seeds. PvACR3 localizes to the plasma membrane in Arabidopsis and increases arsenite efflux into external medium in short-term experiments. Arsenic determination showed that PvACR3 substantially reduced As concentrations in roots and simultaneously increased shoot As under 150 mu M As(V). When cultivated in As(V)-containing soil (10 ppm As), transgenic plants accumulated approximately 7.5-fold more As in above-ground tissues than wild-type plants. This study provides important insights into the behavior of PvACR3 and the physiology of As metabolism in plants. Our work also provides a simple and practical PvACR3 transgenic approach for engineering As-tolerant and -hyperaccumulating plants for phytoremediation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available