4.8 Article

Capacitive Bioanodes Enable Renewable Energy Storage in Microbial Fuel Cells

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 46, Issue 6, Pages 3554-3560

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es204126r

Keywords

-

Funding

  1. Dutch Ministry of Economic Affairs
  2. European Union European Regional Development Fund
  3. Province of Fryslan
  4. city of Leeuwarden
  5. EZ-KOMPAS

Ask authors/readers for more resources

We developed an integrated system for storage of renewable electricity in a microbial fuel cell (MFC). The system contained a capacitive electrode that was inserted into the anodic compartment of an MFC to form a capacitive bioanode. This capacitive bioanode was compared with a noncapacitive bioanode on the basis of performance and storage capacity. The performance and storage capacity were investigated during polarization curves and charge discharge experiments. During polarization curves the capacitive electrode reached a maximum current density of 1.02 +/- 0.04 A/m(2), whereas the noncapacitive electrode reached a current density output of only 0.79 +/- 0.03 A/m(2). During the charge discharge experiment with S min of charging and 20 min of discharging, the capacitive electrode was able to store a total of 22 831 C/m(2), whereas the noncapacitive electrode was only able to store 12 195 C/m(2). Regarding the charge recovery of each electrode, the capacitive electrode was able to recover 52.9% more charge during each charge discharge experiment compared with the noncapacitive electrode. The capacitive electrode outperformed the noncapacitive electrode throughout each charge discharge experiment. With a capacitive electrode it is possible to use the MFC simultaneously for production and storage of renewable electricity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available