4.8 Article

Effects of Chlorine Exposure Conditions on Physiochemical Properties and Performance of a Polyamide Membrane-Mechanisms and Implications

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 46, Issue 24, Pages 13184-13192

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es302867f

Keywords

-

Funding

  1. Tier 1 Research Grant, Ministry of Education, Singapore [RG6/07]
  2. Singapore Stanford Partnership Program

Ask authors/readers for more resources

Understanding the effects of chlorine exposure on polyamide (PA) based membranes is essential in membrane lifespan improvement. In this study, nanofiltration membrane was treated with sodium hypochlorite at different concentrations, pHs and durations. The changes in membrane elemental composition and bonding chemistry obtained from XPS and ATR-FTIR revealed the impacts of two competing mechanisms: N-chlorination and chlorination-promoted hydrolysis. More chlorine was incorporated into the PA matrix at pH <7, at which HOCl is dominant, while chlorine-promoted hydrolysis was more favorable at pH >7 with abundant hydroxyl groups. The membrane surface became more hydrophobic when chlorination was dominant, which in turn caused the water permeability of chlorinated membrane to decrease. Meanwhile, membrane became more hydrophilic and less cross-linked when hydrolysis effects were governing, which made the membrane more permeable for water. Rejection of charged solutes [NaCl, As(V)] improved in most chlorinating conditions due to increased charge density. However, when hydrolysis was severe (>= 1000 ppm, pH 7 and 9), the enhanced charge repulsion effect could not compensate for the extensive amide bond cleavage, resulting in declined rejection. The lower rejection of neutral boric acid provided strong evidence of a less cross-linked separation layer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available