4.8 Article

Environmental Behavior of the Chiral Triazole Fungicide Fenbuconazole and Its Chiral Metabolites: Enantioselective Transformation and Degradation in Soils

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 46, Issue 5, Pages 2675-2683

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es203320x

Keywords

-

Funding

  1. Agricultural Ministry of the People's Republic of China
  2. National Basic Research Program of China (The 973 Program) [2009CB119000]
  3. National Natural Science Foundation of China [31071706, 31000863, 30900951]
  4. Public Service Sector Research and Development Project [200903054, 200903033]

Ask authors/readers for more resources

Fenbuconazole is a widely used systemic agricultural fungicide of the triazole class with one chiral center. In the present study, the enantioselective degradation of fenbuconazole and its chiral metabolites, RH-9129 and RH-9130, in two soils under aerobic and anaerobic conditions were investigated using a chiral OD-RH column on a reversed-phase liquid chromatography tandem mass spectrometry system. Under aerobic or anaerobic conditions, the results showed the occurrence of enantioselectivity with (-)-fenbuconazole preferentially degraded in both soils. Further enantioselective analysis of converted products showed that the concentrations of four RH-9129 and RH-9130 stereoisomers were different from each other under both aerobic and anaerobic conditions. The four stereoisomer concentrations followed the order (-)-RH-9129 > (+)-RH-9129 > (-)-RH-9130 > (+)-RH-9130 in Langfang alkaline soil. However, in the case of Changsha acidic soil, different RH-9129 and RH-9130 stereoisomer patterns were produced in the order (-)-RH-9129 > (+)-RH-9129 > (+)-RH-9130 > (-)-RH-9130. The (-)-RH-9129 stereoisomer had the highest concentration formed by transformation of fenbuconazole in both soils. The degradation of RH-9129 and RH-9130 in the two soils is also stereoselective under both aerobic and anaerobic conditions, the results indicating that the (+)-RH-9130 enantiomer degraded faster than the (-)-RH-9130 enantiomer and the (+)-RH-9129 enantiomer degraded faster than the (-)-RH-9129 enantiomer. In addition, the (-)-RH-9129 isomer exhibited the slowest degradation rate in both soils. This study provides the first experimental evidence of stereoselective degradation and transformation of fenbuconazole as well as its chiral metabolites in the environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available