4.8 Article

High-Performance Microsupercapacitors Based on Two-Dimensional Graphene/Manganese Dioxide/Silver Nanowire Ternary Hybrid Film

Journal

ACS NANO
Volume 9, Issue 2, Pages 1528-1542

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nn5060442

Keywords

microsupercapacitors; reduced graphene oxide; MnO2; sliver nanowire; hybrid film

Funding

  1. MOE Academic Research Fund (AcRF) [RG81/12]

Ask authors/readers for more resources

Microsupercapacitors (MSCs), as one type of significant power source or energy storage unit in microelectronic devices, have attracted more and more attention. However, how to reasonably design electrode structures and exploit the active materials to endow the MSCs with excellent performances in a limited surface area still remains a challenge. Here, a reduced graphene oxide (RGO)/manganese dioxide (MnO2)/silver nanowire (AgNW) ternary hybrid film (RGMA ternary hybrid film) is successfully fabricated by a facile vacuum filtration and subsequent thermal reduction, and is used directly as a binder-free electrode for MSCs. Additionally, a flexible, transparent, all-solid state RMGA-MSC is also built, and its electrochemical performance in an ionic liquid gel electrolyte are investigated in depth. Notably, the RGMA-MSCs display superior electrochemical properties, including exceptionally high rate capability (up to 50000 mV.s(-1)), high frequency response (very short corresponding time constant tau(0) = 0.14 ms), and excellent cycle stability (90.3% of the initial capacitance after 6000 cycles in ionic liquid gel electrolyte). Importantly, the electrochemical performance of RGMA-MSCs shows a strong dependence on the geometric parameters including the interspace between adjacent fingers and the width of the finger of MSCs. These encouraging results may not only provide important references for the design and fabrication of high-performance MSCs, but also make the RGMA ternary hybrid film promising for the next generation film lithium ion batteries and other energy storage devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available