4.8 Article

Gold Nanoparticle Films As Sensitive and Reusable Elemental Mercury Sensors

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 46, Issue 17, Pages 9557-9562

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es3005656

Keywords

-

Funding

  1. NIEHS [P42ES004705]
  2. Wood-Calvert Chair

Ask authors/readers for more resources

We demonstrate the utility of gold nanoparticles (AuNPs) as the basis of a stand-alone, inexpensive, and sensitive mercury monitor. Gold nanoparticles absorb visible light due to localized surface plasmon resonance (LSPR), and the absorbance changes when mercury combines with the gold nanoparticles. The sensitivity of the peak absorbance is proportional to the surface-area-to-volume ratio. We chose 5 nm spheres because they have the largest surface-area-to-volume ratio while still having a peak absorption in the visible range. The adsorption of 15 atoms of Hg causes a 1 nm shift in the LSPR wavelength of these particles. Assembled into a film using the Langmuir-Blodgett method, the AuNP LSPR can be tracked with a simple UV-vis spectrometer. The rate of shift in the peak absorbance is linear with mercury concentrations from 1 to 825 mu g(Hg)/m(air)(3). Increasing the flow velocity (and mass transfer rate) increases the peak shift rate making this system a viable method for direct ambient mercury vapor measurements. Regeneration of the sensing films, done by heating to 160 degrees C, allows for repeatable measurements on the same film.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available