4.8 Article

Methylmercury Cycling in High Arctic Wetland Ponds: Controls on Sedimentary Production

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 46, Issue 19, Pages 10523-10531

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es300577e

Keywords

-

Funding

  1. Natural Science and Engineering Research Council (NSERC)
  2. Aboriginal Affairs and Northern Development Canada
  3. Canadian Circumpolar Institute
  4. Alberta Ingenuity Studentship

Ask authors/readers for more resources

Methylmercury (MeHg) is a potent neurotoxin that has been demonstrated to biomagnify in Arctic freshwater foodwebs to levels that may be of concern to Inuit peoples subsisting on freshwater fish, for example. The key process initiating the bioaccumulation and biomagnification of MeHg in foodwebs is the methylation of inorganic Hg(II) to form MeHg, and ultimately how much MeHg enters foodwebs is controlled by the production and availability of MeHg in a particular water body. We used isotopically enriched Hg stable isotope tracers in sediment core incubations to measure potential rates of Hg(II) methylation and investigate the controls on MeHg production in High Arctic wetland ponds in the Lake Hazen region of northern Ellesmere Island (Nunavut, Canada). We show here that MeHg concentrations in sediments are primarily controlled by the sediment methylation potential and the quantity of Hg(II) available for methylation, but not by sediment demethylation potential. Furthermore, MeHg concentrations in pond waters are controlled by MeHg production in sediments, overall anaerobic microbial activity, and photodemethylation in the water column.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available