4.8 Article

Identification of Key Constituents and Structure of the Extracellular Polymeric Substances Excreted by Bacillus megaterium TF10 for Their Flocculation Capacity

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 45, Issue 3, Pages 1152-1157

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es1030905

Keywords

-

Funding

  1. Natural Science Foundation of China [50625825, 50738006, 50978243]

Ask authors/readers for more resources

Extracellular polymeric substances (EPS), a complex high-molecular-weight mixture of polymers excreted by microorganisms and produced from cell lysis, may have a high bioflocculation activity. In this work, the EPS excreted from Bacillus megaterium TF10, which was isolated from a soil sample, were systematically characterized to give insights into the relationship between their specific constituents and structure with their flocculation capacity. The results of microscopic observation, zeta potential, and TF10 EPS structure analysis show that the bridging mechanism was mainly responsible for the flocculation of the TF10. The constituents with a large molecular weight (1037-2521 kDA) and functional groups had contributed to the flocculation. GC-MS and NMR analyses demonstrate that the polysaccharides had long chain composed of rhamnose as well as glucose and galactose with uronic acids, acetyl amino sugars, and proteins as the side chains. The proteins in TF10 had no flocculation ability because of their special secondary structure and molecular weight diffusion characters. The EPS from Bacillus megaterium TF10 were found to exhibit a high flocculation activity, and the polysaccharides in EPS, which have the structure of the long backbone with active side chains, were identified as the active constituents for the high flocculation activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available