4.8 Article

Characterization of Residential Wood Combustion Particles Using the Two-Wavelength Aethalometer

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 45, Issue 17, Pages 7387-7393

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es2013984

Keywords

-

Funding

  1. New York State Energy Research and Development Authority (NYSERDA) [8650, 10604]
  2. United States Environmental Protection Agency (EPA) [RD83241501, X-83232501-0]
  3. Electric Power Research Institute [W06325]
  4. EPA

Ask authors/readers for more resources

In the United States, residential wood combustion (RWC) is responsible for 7.0% of the national primary PM(2.5) emissions. Exposure to RWC smoke represents a potential human health hazard. Organic components of wood smoke particles absorb light at 370 nm more effectively than 880 nm in two-wavelength aethalometer measurements. This enhanced absorption (Delta-C = BC(370) (nm) - BC(880 nm)) can serve as an indicator of RWC particles. In this study, aethalometer Delta-C data along with measurements of molecular markers and potassium in PM(2.5) were used to identify the presence of airborne RWC particles in Rochester, NY. The aethalometer data were corrected for the loading effect. Delta-C was found to strongly correlate with wood smoke markers (levoglucosan and potassium) during the heating season. No statistically significant correlation was found between Delta-C and vehicle exhaust markers. The Delta-C values were substantially higher during winter compared to summer. The winter diurnal pattern showed an evening peak around 21:00 that was particularly enhanced on weekends. A relationship between Delta-C and PM(2.5) was found that permits the estimation of the contribution of RWC particles to the PM mass. RWC contributed 17.3% to the PM(2.5) concentration during the winter. Exponential decay was a good estimator for predicting Delta-C concentrations at different winter precipitation rates and different wind speeds. Delta-C was also sensitive to remote forest fire smoke.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available