4.5 Article

Prediction of delamination growth in carbon/epoxy composites using a novel acoustic emission-based approach

Journal

JOURNAL OF REINFORCED PLASTICS AND COMPOSITES
Volume 34, Issue 11, Pages 868-878

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0731684415583166

Keywords

Delamination; carbon; epoxy; acoustic emission; sentry function; localization

Ask authors/readers for more resources

Delamination is the most common failure mode in laminated composites and it leads to loss of structural strength and stiffness. In this paper, acoustic emission monitoring was applied on the carbon/epoxy laminated composites when subjected to mode I, mode II, and mixed-mode I and II loading conditions. The main objective is to investigate delamination behavior and to predict propagation curve of the delamination in different G(II)/G(T) modal ratio values by the acoustic emission. First, a combination of acoustic emission and mechanical data (sentry function) is used to characterize the propagation stage of the delamination. Next, the crack tip location during propagation of the delamination in the specimens is identified using two methods. In the first method, by determining the velocity of the acoustic emission waves in the specimens, the position of the crack tip can be estimated throughout the tests. In the second method, the cumulative energy of the acoustic emission signals is utilized for localization of the crack tip. Agreement between the predicted crack length and the actual crack length verifies the presented procedures. It can be concluded from the results that the acoustic emission method is a powerful approach to investigate the delamination behavior and to estimate the crack tip position in the composites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available