4.8 Article

Coadsorption of Ciprofloxacin and Cu(II) on Montmorillonite and Kaolinite as Affected by Solution pH

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 44, Issue 3, Pages 915-920

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es902902c

Keywords

-

Funding

  1. National Natural Science Foundation of China [20707037, 20877087, 20737003]
  2. Youth Fund of State Key Laboratory of Environmental Chemistry and Ecotoxicology [QN2009-07]

Ask authors/readers for more resources

The coadsorption of ciprofloxacin (Cip) and Cu(II) on montmorillonite and kaolinite was studied between pH 4.0 and 9.5. At pH < 5.0, Cu2+, Cip(+) and [Cu(II)(Cip(+/-))](2+) were the main species in solution. Between pH 5.0-7.0 [Cu(II)(Cip(+/-))](2+) was the dominant complex species. Above pH 8.0 [Cu(II)(Cip(-))(2)](0) precipitated. The presence of Cu(II) exerted no effect on the Cip sorption onto montmorillonite at low pH, whereas it increased Cip sorption on montmorillonite at pH > 6.0 due to the stronger affinity of Cip-Cu(II) complexes compared to sole Cip(-) or Cip(+/-), or Cip sorption via a Cu(II) bridge increased. In contrast Cip increased Cu(II) adsorption on montmorillonite at pH < 7.0, whereas it decreased the adsorption of Cu(II) on kaolinite at pH 6.0-8.0. Cip was sorbed onto the kaolinite surface via interaction of carboxyl groups over the entire pH range. At pH 4.0-4.7, Cip(+) sorption onto kaolinite's positively charged surface was more favorable than sorption of Cip-Cu(II) complexes. Batch experiments and FIR analyses indicated that the coordination between Cip(+/-), Cip(-) and Cu(II) were most likely present on kaolinite surface at pH 7.0. At pH > 8.0, Cu(OH)(2) (s) and [Cu(II)(Cip(-))(2)](0) precipitated out of solution or on the montmorillonite or kaolinite surface, which was not considered evidence for either the sorption of Cip or the adsorption of Cu(II).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available