4.8 Article

Arsenic Mobilization in a Seawater Inundated Acid Sulfate Soil

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 44, Issue 6, Pages 1968-1973

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es903114z

Keywords

-

Funding

  1. Cooperative Research Centre for Contamination Assessment and Remediation of the Environment [6-6-01-06/07]
  2. Queensland Department of Environment and Resource Management
  3. Australian Synchrotron Research Program [AS083/ANBF711]
  4. Australian Research Council

Ask authors/readers for more resources

Tidal seawater inundation of coastal acid sulfate soils can generate Fe- and SO4-reducing conditions in previously oxic-acidic sediments. This creates potential for mobilization of As during the redox transition. We explore the consequences for As by investigating the hydrology, porewater geochemistry, solid-phase speciation, and mineralogical partitioning of As across two tidal fringe toposequences. Seawater inundation induced a tidally controlled redox gradient. Maximum porewater As (similar to 400 mu g/L) occurred in the shallow (<1 m), intertidal, redox transition zone between Fe-oxidizing and SO4-reducing conditions. Primary mechanisms of As mobilization include the reduction of solid-phase As(V) to As(III), reductive dissolution of As(V)-bearing secondary Fe(III) minerals and competitive anion desorption. Porewater As concentrations decreased in the zone of contemporary pyrite reformation. Oscillating hydraulic gradients caused by tidal pumping promote upward advection of As and Fe2+-enriched porewater in the intertidal zone, leading to accumulation of As(V)-enriched Fe(III) (hydr)oxides at the oxic sediment-water interface. While this provides a natural reactive-Fe barrier, it does not completely retard the flux of porewater As to overtopping surface waters. Furthermore, the accumulated Fe minerals may be prone to future reductive dissolution. A conceptual model describing As hydro-geochemical coupling across an intertidal fringe is presented.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available