4.8 Article

Triple Domain in Situ Sorption Modeling of Organochlorine Pesticides, Polychlorobiphenyls, Polyaromatic Hydrocarbons, Polychlorinated Dibenzo-p-Dioxins, and Polychlorinated Dibenzofurans in Aquatic Sediments

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 43, Issue 23, Pages 8847-8853

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es9021188

Keywords

-

Funding

  1. Department of Noord-Holland of the Dutch Ministry of Public Works, Transport and Water Management

Ask authors/readers for more resources

Here we analyze the potential of black carbon (BC) and oil-inclusive models to explain in situ sorption of 1,1-dichloro-2,2bis(p-chlorophenyl)ethylene (DOE), 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD), organochlorine pesticides (OCP), polychlorobiphenyls (PCB), polyaromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDD), and polychlorinated dibenzofurans (PCDF) to harbor sediments. Such models are important to understand bioavailability and mobility limitations of these chemicals in the aquatic environment. Separate BC- or oil-inclusive models have been described before. However, it is unclear whether oil could dominate in situ sorption in sediments that also contain BC, and whether the relative importance of phases would differ for different compounds. A BC- and oil-inclusive model was evaluated against chemical data and measured sediment characteristics. Parameter uncertainty was assessed using Monte Carlo simulations. Fitted model parameters were consistent with literature data and were satisfactory from a statistical as well as a chemical perspective. Sorption to oil was strong, proportional to octanol-water partitioning (Log K-ow) and of similar magnitude for OCP, PCB, PCDD, and PCDF. For PAH a single oil sorption coefficient was found. Oil dominated sorption only for PCBs, at oil levels above 50-250 mg oil/kg sediment. BC dominated sorption of most other compounds, especially high molecular PAHs, PCDD, and PCDFs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available