4.8 Article

Arsenic Redox Changes by Microbially and Chemically Formed Semiquinone Radicals and Hydroquinones in a Humic Substance Model Quinone

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 43, Issue 10, Pages 3639-3645

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es803112a

Keywords

-

Funding

  1. German Research Foundation (DFG) [PA 1655/1-1]
  2. BMBF IPSWaT

Ask authors/readers for more resources

Arsenic is a redox-active metalloid whose toxicity and mobility strongly depends on its oxidation state, with arsenite (As(III)) being more toxic and mobile than arsenate (As(V)). Humic substances (HS) are also redox-active and can potentially react with arsenic and change its redox state. In this study we show that semiquinone radicals produced during microbial or chemical reduction of a HS model quinone (AQDS, 9,10-anthraquinone-2,6-disulfonic acid) are strong oxidants. They oxidize arsenite to arsenate, thus decreasing As toxicity and mobility. This reaction depends strongly on pH with more arsenite (up to 67.3%) being oxidized at pH 11 compared to pH 7 (12.6% oxidation) and pH 3 (0.5% oxidation). In addition to As(III) oxidation by semiquinone radicals, hydroquinones that were also produced during quinone reduction reduced As(V) to As(III) at neutral and acidic pH values (less than 12%) but not at alkaline pH. In order to understand redox reactions between arsenite/arsenate and reduced/oxidized HS, we quantified the radical content in reduced quinone solutions and constructed E-h-pH diagrams that explain the observed redox reactions. The results from this study can be used to better predict the fate of arsenic in the environment and potentially explain the occurrence of oxidized As(V) in anoxic environments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available