4.8 Article

Transport Characteristics of Nanoscale Functional Zerovalent Iron/Silica Composites for in Situ Remediation of Trichloroethylene

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 42, Issue 23, Pages 8871-8876

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es800387p

Keywords

-

Funding

  1. Environmental Protection Agency [EPA-GR832374]

Ask authors/readers for more resources

Effective in situ remediation of groundwater requires the successful delivery of reactive iron particles through soil. In this paper we report the transport characteristics of nanoscale zerovalent iron entrapped in porous silica particles and prepared through an aerosol-assisted process. The entrapment of iron nanoparticles into the silica matrix prevents their aggregation while maintaining the particies' reactivity. Furthermore, the silica particles are functionalized with alkyl groups and are extremely efficient in adsorbing dissolved trichloroethylene (TCE). Because of synthesis through the aerosol route, the particles are of the optimal size range (0.1-1 mu m) for mobility through sediments. Column and capillary transport experiments confirm that the particles move far more effectively through model soils than commercially available uncoated nanoscale reactive iron particles. Microcapillary experiments indicate that the particles partition to the interface of TCE droplets, further enhancing their potential for dense non-aqueous-phase liquid source-zone remediation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available