4.8 Article

Source attribution of submicron organic aerosols during wintertime inversions by advanced factor analysis of aerosol mass spectra

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 42, Issue 1, Pages 214-220

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es0707207

Keywords

-

Funding

  1. NERC [ncas10006] Funding Source: UKRI
  2. Natural Environment Research Council [ncas10006] Funding Source: researchfish

Ask authors/readers for more resources

Real-time measurements of submicrometer aerosol were performed using an Aerodyne aerosol mass spectrometer (AMS) during three weeks at an urban background site in Zurich (Switzerland) in January 2006. A hybrid receptor model which incorporates a priori known source composition was applied to the AMS highly time-resolved organic aerosol mass spectra. Three sources and components of submicrometer organic aerosols were identified: the major component was oxygenated organic aerosol (OOA), mostly representing secondary organic aerosol and accounting on average for 52-57% of the particulate organic mass. Radiocarbon (C-14) measurements of organic carbon (OC) indicated that similar to 31 and similar to 69% of OOA originated from fossil and nonfossil sources, respectively. OOA estimates were strongly correlated with measured particulate ammonium. Particles from wood combustion (35-40%) and 3-13% traffic-related hydrocarbon-like organic aerosol (HOA) accounted for the other half of measured organic matter (OM). Emission ratios of modeled HOA to measured nitrogen oxides (NOx) and OM from wood burning to levoglucosan from filter analyses were found to be consistent with literature values.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available