4.8 Article

AgNO3-induced photocatalytic degradation of odorous methyl mercaptan in gaseous phase:: Mechanism of chemisorption and photocatalytic reaction

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 42, Issue 12, Pages 4540-4545

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es7031345

Keywords

-

Ask authors/readers for more resources

In this study, AgNO3 films prepared by a simple dip-coating method were used to remove gaseous methyl mercaptan (CH3SH) for odor control. The AgNO3 films were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy/energy-dispersive X-ray spectrometry (SEM/EDX), and X-ray photoelectron spectroscopy (XPS) before and after the reaction, and as-obtained products were identified by means of gas chromatography/mass spectrometry (GC/MS) and ion chromatography. The experiments demonstrated that the AgNO3 film can induce a quick chemisorption of gaseous CH3SH to form AgSCH3 and other intermediate products such as (alpha-Ag2S, Ag4S2, and AgSH on its surface. Under UVA illumination, these sulfur products can be photocatalytically oxidized to AgSO3CH3 and Ag2SO4. Then AgSO3CH3 and Ag2SO4 Will continue the chemisorption of gaseous CH3SH, similar to AgNO3, to form AgSCH3 again and release two final products, HSO3CH3 and H2SO4. Hence it is a AgNO3-induced photocatalytic reaction for odorous CH3SH degradation in gaseous phase. This fundamental research about the mechanism of chemisorption and photocatalytic reaction provides essential knowledge with potential to further develop a new process for gaseous CH3SH degradation in odor control.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available