4.8 Article

Temperature programmed reduction for measurement of oxygen content in nanoscale zero-valent iron

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 42, Issue 10, Pages 3780-3785

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es7027845

Keywords

-

Ask authors/readers for more resources

Nanoscale zerovalent iron (nZVI) has increasingly been used for environmental remediation and in toxic waste treatment. Most applications exploit its large surface area and high reactivity, the latter being a function of zerovalent iron content. In this work, temperature programmed reduction was applied to measure oxygen in nZVI. Iron oxides in nZVI were reduced by hydrogen to form metallic iron and water, which was then measured with an online mass spectrometer to determine oxygen content of the sample. For fresh nZVI prepared by sodium borohydride reduction of iron salts, average oxygen content was 8.21%. Total iron content was approximately 90.35% by the method of acid digestion; Fe(III) content was estimated at 14.37%, and that of zerovalent iron [Fe(0)] at 75.98%. The oxygen content quickly increased to 26.14% after purging with oxygen for four hours. Several other techniques were also used to characterize the iron nanoparticles. High resolution TEM provided direct evidence of the oxide shell structure and indicated that the shell thickness was predominantly in the range of 2-4 nm. The surface elemental composition was determined from high-resolution X-ray photoelectron spectroscopy. The nZVI oxygen content results fill a knowledge gap on nZVI composition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available