4.8 Article

Heavy metal immobilization through phosphate and thermal treatment of dredged sediments

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 42, Issue 3, Pages 920-926

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es072082y

Keywords

-

Ask authors/readers for more resources

Disposal of dredged sediments is expensive and poses a major challenge for harbor dredging projects. Therefore beneficial reuse of these sediments as construction material is highly desirable assuming contaminants such as heavy metals are immobilized and organics are mineralized. In this research, the effect of the addition of 2.5% phosphate, followed by thermal treatment at 700 degrees C, was investigated for metal contaminants in dredged sediments. Specifically, Zn speciation was evaluated, using X-ray absorption spectroscopy (XAS), by applying principal component analysis (PICA), target transformation (TT), and linear combination fit (LCF) to identify the main phases and their combination from an array of reference compounds. In dredged sediments, Zn was present as smithsonite (67%) and adsorbed to hydrous manganese oxides (18%) and hydrous iron oxides (15%). Phosphate addition resulted in precipitation of hopeite (22%), while calcination induced formation of spinels, gahnite (44%), and franklinite (34%). Although calcination was previously used to agglomerate phosphate phases by sintering, we found that it formed sparingly soluble Zn phases. Results from the U.S. EPA toxicity characteristic leaching procedure (TCLP) confirmed both phosphate addition and calcination. reduced leachability of heavy metals with the combined treatment achieving up to an 89% reduction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available