4.7 Article

Assessing the likelihood of catchments across England and Wales meeting 'good ecological status' due to sediment contributions from agricultural sources

Journal

ENVIRONMENTAL SCIENCE & POLICY
Volume 11, Issue 2, Pages 163-170

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envsci.2007.07.008

Keywords

Water Framework Directive; suspended sediment; good ecological status; agriculture

Ask authors/readers for more resources

This paper is concerned with estimating the gap between current and compliant losses of suspended sediment from the agricultural sector in England and Wales in relation to achieving 'good ecological status' (GES) in freshwaters by 2015. Given the emphasis on strategic information for policy support, the assessment necessitated a novel modelling methodology for predicting mean annual total suspended sediment loads (SSL) and time-weighted suspended sediment concentrations (SSC). GES was defined as the guideline annual average SSC of 25 mg l(-1) cited by the EC Freshwater Fish Directive. Total suspended sediment inputs to all rivers across England and Wales were estimated using a national sediment source apportionment exercise detailing the contributions from diffuse agricultural and urban sources, eroding channel banks and point sources. The total SSL estimated for each Water Framework Directive (WFD) sub-catchment (n = 7816) across England and Wales was used in conjunction with predicted flow exceedance to derive corresponding SSC time-exceedance plots. Spatial variations in modelled time-averaged SSC compared well with available monitoring data. Given the focus upon national scale, the predictive power of the SSC model (r(2) = 33%) was considered realistic. The modelling approach provided a means of mapping the probability of annual average SSC being less than the 2S mg l(-1) standard for GES due to sediment losses from all potential, as well as from agricultural sources only. In order to meet GES in non-compliant catchments, suspended sediment losses from diffuse agricultural sources will typically need to be reduced by up to 20%, but by as much as 80% in isolated cases. (C) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available