4.5 Article

Metal release from serpentine soils in Sri Lanka

Journal

ENVIRONMENTAL MONITORING AND ASSESSMENT
Volume 186, Issue 6, Pages 3415-3429

Publisher

SPRINGER
DOI: 10.1007/s10661-014-3626-8

Keywords

Chemical extractions; Natural attenuation; Labile toxic metals; Serpentine geoecology; EPMA

Funding

  1. International Foundation for Science (Sweden)
  2. Organization for the Prohibition of Chemical Weapons, The Hague [W/5068-1]

Ask authors/readers for more resources

Ultramafic rocks and their related soils (i.e., serpentine soils) are non-anthropogenic sources of metal contamination. Elevated concentrations of metals released from these soils into the surrounding areas and groundwater have ecological-, agricultural-, and human health-related consequences. Here we report the geochemistry of four different serpentine soil localities in Sri Lanka by coupling interpretations garnered from physicochemical properties and chemical extractions. Both Ni and Mn demonstrate appreciable release in water from the Ussangoda soils compared to the other three localities, with Ni and Mn metal release increasing with increasing ionic strengths at all sites. Sequential extraction experiments, utilized to identify elemental pools, indicate that Mn is mainly associated with oxides/(oxy)hydroxides, whereas Ni and Cr are bound in silicates and spinels. Nickel was the most bioavailable metal compared to Mn and Cr in all four soils, with the highest value observed in the Ussangoda soil at 168 +/- 6.40 mg kg(-1) via the 0.01-M CaCl2 extraction. Although Mn is dominantly bound in oxides/(oxy)hydroxides, Mn is widely dispersed with concentrations reaching as high as 391 mg kg(-1) (Yudhaganawa) in the organic fraction and 49 mg kg(-1) (Ussangoda) in the exchangeable fraction. Despite Cr being primarily retained in the residual fraction, the second largest pool of Cr was in the organic matter fraction (693 mg kg(-1) in the Yudhaganawa soil). Overall, our results support that serpentine soils in Sri Lanka offer a highly labile source of metals to the critical zone.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available