4.5 Article

Monitoring sediment oxygen demand for assessment of dissolved oxygen distribution in river

Journal

ENVIRONMENTAL MONITORING AND ASSESSMENT
Volume 184, Issue 9, Pages 5589-5599

Publisher

SPRINGER
DOI: 10.1007/s10661-011-2364-4

Keywords

Sediment oxygen demand; Dissolved oxygen; Monitoring; Model; Xindian river

Funding

  1. National Science Council, Taiwan [98-2625-M-239-001]

Ask authors/readers for more resources

Sediment oxygen demand (SOD) has become an integral part of modeling dissolved oxygen (DO) within surface water bodies. Because very few data on SOD are available, it is common for modeler to take SOD values from literature for use within DO models. SOD is such an important parameter in modeling DO that this approach may lead to erroneous results. This paper reported on developing an approach for monitoring sediment oxygen demand conducted with undisturbed sediment core samples, where the measured results were incorporated into a water quality model for simulating and assessing dissolved oxygen distribution in the Xindian River of northern Taiwan. The measured results indicate that a higher freshwater discharge results in a lower SOD. Throughout a 1-year observation in 2004, the measured SOD ranged from 0.367 to 1.246 g/m(2)/day at the temperature of 20A degrees C. The mean values of the measured SOD at each station were adopted in a vertical two-dimensional water quality model to simulate the DO distribution along the Xindian River. The simulating results accurately depict the field-measured DO distribution during the low and high flow conditions. Model sensitivity analyses were also conducted with increasing and decreasing SOD values for the low and high flow conditions and revealed that SOD had a significant impact on the DO distribution along the Xindian River. The present work combined with field measurements and numerical simulation should assist in river water quality management.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available