4.7 Article

An erosion model for evaluating regional land-use scenarios

Journal

ENVIRONMENTAL MODELLING & SOFTWARE
Volume 25, Issue 3, Pages 289-298

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envsoft.2009.09.011

Keywords

Erosion model; Land-use scenarios; Mass-movement erosion; Sediment delivery ratio; Sediment yield; Sediment discharge; Soil conservation; Erosion terrain

Ask authors/readers for more resources

The conversion to pasture of indigenous forest on New Zealand hill country has led to increased mass-movement erosion and consequently increased sedimentation of waterways. Effective soil conservation requires a model that can evaluate erosion and sedimentation for different land-use scenarios. In this paper, we develop a model of mean sediment discharge related to mean erosion rates through a sediment delivery ratio. Mean erosion rate in a particular terrain (erosion terrain) is the product of (i) the square of mean annual rainfall with (ii) a cover factor and (iii) an erosion coefficient that depends on erosion terrain. Measurements of mean sediment discharge are used to estimate erosion coefficients for each erosion terrain. The model can be used to predict mean sediment discharge in response to land-cover/land-use scenarios. It is easy to execute and uses input data readily available in GIS layers in New Zealand. This makes it suitable for widespread management application, in contrast to physically based models which are presently only suitable for research catchments. We demonstrate the utility of the model for three different applications: evaluating land-use scenarios in the Motueka catchment; setting priorities for soil conservation in the Manawatu catchment; and determining national trends in agricultural erosion over a 30-year period. The general methodology is applicable to countries dominated by mountains and steep hills with high erosion rates. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available