4.6 Article

Metabolic and regulatory rearrangements underlying glycerol metabolism in Pseudomonas putida KT2440

Journal

ENVIRONMENTAL MICROBIOLOGY
Volume 16, Issue 1, Pages 239-254

Publisher

WILEY
DOI: 10.1111/1462-2920.12224

Keywords

-

Categories

Funding

  1. Spanish Ministry of Science and Innovation
  2. EU
  3. CAM
  4. EC (ALLEGRO) [UE-FP7-PEOPLE-2011-IIF-300508]

Ask authors/readers for more resources

While the natural niches of the soil bacterium Pseudomonas putida are unlikely to include significant amounts of free glycerol as a growth substrate, this bacterium is genetically equipped with the functions required for its metabolism. We have resorted to deep sequencing of the transcripts in glycerol-grown P.putidaKT2440 cells to gain an insight into the biochemical and regulatory components involved in the shift between customary C sources (e.g. glucose or succinate) to the polyol. Transcriptomic results were contrasted with key enzymatic activities under the same culture conditions. Cognate expression profiles revealed that genes encoding enzymes of the Entner-Doudoroff route and other catabolic pathways, e.g. the gluconate and 2-ketogluconate loops, were significantly downregulated on glycerol. Yet, the compound simultaneously elicited a gluconeogenic response that indicated an efficient channelling of C skeletons back to biomass build-up through the glyoxylate shunt rather than energization of the cells through downwards pathways, i.e. tricarboxylic acid cycle and oxidative phosphorylation. The simultaneous glycolytic and gluconeogenic metabolic regimes on glycerol, paradoxical as they seem, make sense from an ecological point of view by favouring prevalence versus exploration. This metabolic situation was accompanied by a considerably low expression of stress markers as compared with other C sources.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available