4.6 Article

Initial step in the catabolism of cholesterol by Mycobacterium smegmatis mc2155

Journal

ENVIRONMENTAL MICROBIOLOGY
Volume 13, Issue 4, Pages 943-959

Publisher

WILEY
DOI: 10.1111/j.1462-2920.2010.02398.x

Keywords

-

Categories

Funding

  1. Ministry of Science and Innovation [BFU2006-15214-C03-01, BFU2009-11545-C03-03]
  2. Consejo Superior de Investigaciones Cientificas [BFU2006-15214-CO3-01]

Ask authors/readers for more resources

P>The first step in the catabolism of cholesterol, i.e. the transformation of cholesterol into cholestenone, has been investigated in Mycobacterium smegmatis. In silico analysis identified the MSMEG_1604 gene encoding a putative protein similar to the ChoD cholesterol oxidase of M. tuberculosis H37Rv (Rv3409c) and the MSMEG_5228 gene coding for a protein similar to the NAD(P)-dependent cholesterol dehydrogenase/isomerase of Nocardia sp. The expression of the MSMEG_5228 gene was inducible by cholesterol whereas the expression of MSMEG_1604 gene was constitutive. When both genes were expressed in Escherichia coli only the MSMEG_5228 protein was active on cholesterol. The function of ChoD-like MSMEG_1604 protein remains to be elucidated, but it does not appear to play a critical role in the mineralization of cholesterol as a MSMEG_1604- mutant was not affected in the production of cholestenone. However, a MSMEG_5228- mutant showed a drastic reduction in the synthesis of cholestenone. The finding that this mutant was still able to grow in cholesterol, allowed us to demonstrate that the cholesterol-inducible MSMEG_5233 gene encodes an additional cholesterol dehydrogenase/isomerase similar to the AcmA dehydrogenase of Sterolibacterium denitrificans. The observation that the double MSMEG_5228-5233- mutant was able to grow in cholesterol suggests that in addition to these enzymes other dehydrogenase/isomerases can also catalyse the first reaction of the cholesterol degradation pathway in M. smegmatis, which is not the limiting step of the process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available