4.6 Article

Comparative analysis between protist communities from the deep-sea pelagic ecosystem and specific deep hydrothermal habitats

Journal

ENVIRONMENTAL MICROBIOLOGY
Volume 12, Issue 11, Pages 2946-2964

Publisher

WILEY
DOI: 10.1111/j.1462-2920.2010.02272.x

Keywords

-

Categories

Funding

  1. ANR
  2. Ministere de la Recherche

Ask authors/readers for more resources

P>Protist communities associated with deep seawater and bivalves from six hydrothermal sites in the Pacific Ocean were characterized by microscopy and molecular rRNA gene surveys (18S rRNA) and compared with planktonic communities from Pacific deep-pelagic seawater (from 500 to 3000 m in depth). Genetic libraries from larger size fractions (> 3 mu m) of deep-pelagic water were mainly dominated by Dinophyceae, whereas small size fractions (< 3 mu m) mainly revealed radiolarians and Syndiniales. In contrast, more specific opportunistic detritivores and grazers, mostly belonging to Stramenopiles and Cercozoa, were detected from water surrounding vent chimneys. Protist communities were different in the pallial cavity of the giant hydrothermal bivalves Bathymodiolus thermophilus and Calyptogena magnifica, dominated by Ciliophora (primarily belonging to Phyllopharyngea, Oligohymenophorea and Oligotrichea) and Cercozoa. Interestingly, protist communities retrieved from the pallial cavity liquid of hydrothermal bivalves were remarkably homogeneous along the Southern East Pacific Rise, in contrast to bivalves collected on the Mid-Atlantic Ridge hydrothermal vents and cold seeps from the Gulf of Mexico. Hence, complex protist communities seem to occur inside hydrothermal bivalves, and these metazoa may constitute a stable micro-niche for micro-eukaryotes, including grazers, detritivores, symbionts and potential parasites. From these communities, new lineages within the ciliates may emerge.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available