4.7 Article

PCB-95 Modulates the Calcium-Dependent Signaling Pathway Responsible for Activity-Dependent Dendritic Growth

Journal

ENVIRONMENTAL HEALTH PERSPECTIVES
Volume 120, Issue 7, Pages 1003-1009

Publisher

US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE
DOI: 10.1289/ehp.1104833

Keywords

autism; Ca2+; CaMKI; CREB; dendrites; developmental neurotoxicity; hippocampal MEK; neuronal connectivity; neurons; non-dioxin-like PCBs; ryanodine receptor; Wnt2

Funding

  1. National Institutes of Health [R01 ES014901, R01 ES017425, P42 ES04699, R01 MH086032, P01 ES011269, T32 ES007060]
  2. Hope for Depression Research Foundation
  3. J.B. Johnson Foundation

Ask authors/readers for more resources

BACKGROUND: Non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) promote dendritic growth in hippocampal neurons via ryanodine receptor (RyR)-dependent mechanisms; however, downstream signaling events that link enhanced RyR activity to dendritic growth are unknown. Activity-dependent dendritic growth, which is a critical determinant of neuronal connectivity in the developing brain, is mediated by calcium ion (Ca2+)-dependent activation of Ca2+/calmodulin kinase-I (CaMKI), which triggers CAMP response element binding protein (CREB)-dependent Wnt2 transcription. RyRs regulate the spatiotemporal dynamics of intracellular Ca2+ signals, but whether RyRs promote dendritic growth via modulation of this signaling pathway is not known. OBJECTIVE: We tested the hypothesis that the CaMKI CREB Wnt2 signaling pathway couples NDL PCB-enhanced RyR activity to dendritic arborization. METHODS AND RESULTS: Ca2+ imaging of dissociated cultures of primary rat hippocampal neurons indicated that PCB-95 (2,2',3,5'6-pentachlorobiphenyl; a potent RyR potentiator), enhanced synchronized Ca2+ oscillations in somata and dendrites that were blocked by ryanodine. As determined by Western blotting and quantitative polymerase chain reaction, PCB-95 also activated CREB and up-regulated Wnt2. Blocking CaMKK, CaMKI alpha/gamma, MEK/ERK, CREB, or Wnt2 prevented PCB-95 induced dendritic growth. Antagonism of gamma-aminobutyric acid (GABA) receptors with bicuculline (BIC) phenocopied the dendrite-promoting effects of PCB-95, and pharmacological antagonism or siRNA knockdown of RyR blocked BIC-induced dendritic growth in dissociated and slice cultures of hippocampal neurons. CONCLUSIONS: RyR activity contributes to dynamic remodeling of dendritic architecture in response to NDL PCBs via CaMKI CREB Wnt2 signaling in rats. Our findings identify PCBs as candidate environmental risk factors for neurodevelopmental disorders, especially in children with heritable deficits in calcium signaling associated with autism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available