4.7 Review

An Emerging Role for Epigenetic Dysregulation in Arsenic Toxicity and Carcinogenesis

Journal

ENVIRONMENTAL HEALTH PERSPECTIVES
Volume 119, Issue 1, Pages 11-19

Publisher

US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE
DOI: 10.1289/ehp.1002114

Keywords

arsenic carcinogenesis; arsenical compounds; DNA methylation; epigenetics; histone modification; microRNA

Funding

  1. National Institute of Environmental Health Sciences [P42 ES004705]
  2. NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES [P42ES004705] Funding Source: NIH RePORTER

Ask authors/readers for more resources

BACKGROUND: Exposure to arsenic, an established human carcinogen, through consumption of highly contaminated drinking water is a worldwide public health concern. Several mechanisms by which arsenical compounds induce tumorigenesis have been proposed, including oxidative stress, genotoxic damage, and chromosomal abnormalities. Recent studies have suggested that epigenetic mechanisms may also mediate toxicity and carcinogenicity resulting from arsenic exposure. OBJECTIVE: We examined the evidence supporting the roles of the three major epigenetic mechanisms-DNA methylation, histone modification, and microRNA (miRNA) expression-in arsenic toxicity and, in particular, carcinogenicity. We also investigated future research directions necessary to clarify epigenetic and other mechanisms in humans. DATA SOURCES AND SYNTHESIS: We conducted a PubMed search of arsenic exposure and epigenetic modification through April 2010 and summarized the in vitro and in vivo research findings, from both our group and others, on arsenic-associated epigenetic alteration and its potential role in toxicity and carcinogenicity. CONCLUSIONS: Arsenic exposure has been shown to alter methylation levels of both global DNA and gene promoters; histone acetylation, methylation, and phosphorylation; and miRNA expression, in studies analyzing mainly a limited number of epigenetic end points. Systematic epigenomic studies in human populations exposed to arsenic or in patients with arsenic-associated cancer have not yet been performed. Such studies would help to elucidate the relationship between arsenic exposure, epigenetic dysregulation, and carcinogenesis and are becoming feasible because of recent technological advancements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available