4.8 Article

Versatile Conjugated Polymer Nanoparticles for High-Resolution O2 Imaging in Cells and 3D Tissue Models

Journal

ACS NANO
Volume 9, Issue 5, Pages 5275-5288

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.5b00771

Keywords

3D tissue model; cell and tissue oxygenation; cell-penetrating nanoparticle probe; conjugated polymer; imaging; molecular oxygen; phosphorescence quenching

Funding

  1. Science Foundation Ireland (SFI) [13/SIRG/2144, 12/RC/2276]
  2. European Research Council [267233]
  3. Russian Scientific Foundation [14-14-00882]
  4. Russian Science Foundation [14-14-00882] Funding Source: Russian Science Foundation

Ask authors/readers for more resources

High brightness, chemical and photostability, tunable characteristics, and spectral and surface properties are important attributes for nanoparticle probes designed for live cell imaging. We describe a class of nanoparticles for high-resolution imaging of O-2 that consists of a substituted conjugated polymer (polyfluorene or poly(fluorene-alt-benzothiadiazole)) acting as a FRET antenna and a fluorescent reference with covalently bound phosphorescent metalloporphyrin (PtTFPP, PtTPTBPF). The nanoparticles prepared from such copolymers by precipitation method display stability, enhanced (>5-10 times) brightness under one- and two-photon excitation, compatibility with ratiometric and lifetime-based imaging modes, and low toxicity for cells. Their cell-staining properties can be modulated with positively and negatively charged groups grafted to the backbone. The zwitter-ionic nanoparticles show high cell-staining efficiency, while their cell entry mechanisms differ for the different 3D models. When injected in the bloodstream, the cationic and anionic nanoparticles show similar distribution in vivo. These features and tunable properties make the conjugated polymer based phosphorescent nanoparticles a versatile tool for quantitative O-2 imaging with a broad range of cell and 3D tissue models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available