4.6 Article

Spatial and temporal characterization of trace elements and nutrients in the Rawal Lake Reservoir, Pakistan using multivariate analysis techniques

Journal

ENVIRONMENTAL GEOCHEMISTRY AND HEALTH
Volume 33, Issue 6, Pages 525-541

Publisher

SPRINGER
DOI: 10.1007/s10653-010-9369-8

Keywords

Rawal Lake Reservoir; Spatial and temporal variations; Principal component analysis; Cluster analysis; Water quality; Metals; Multivariate techniques

Funding

  1. Higher Education Commission [02-828/RND/07]

Ask authors/readers for more resources

Rawal Lake Reservoir is renowned for its ecological significance and is the sole source of drinking water of the third largest city of Pakistan. However, fish kill in recent years and anthropogenic impacts from human-related activities in its catchment area have resulted in deterioration of its surface water quality. This study aims to characterize spatial and temporal variations in surface water quality, identify contaminant sources, and compare their levels with quality guidelines. Surface water samples were collected from 10 sites and analyzed for 27 physicochemical parameters for a period of 2 years on a seasonal basis. Concentration of metals in surface water in pre-monsoon were in the order: Fe > Mg > Ca > Mn > Zn > Ni > Cr > Cu > Co > Pb, whereas in post-monsoon, the order of elemental concentrations was: Ca > Mg > Na > Fe > K > Zn > Cr > Li > Pb > Co > Ni > Cu > Mn > Cd. Metals (Ni, Fe, Zn, and Ca), pH, electrical conductivity (EC), dissolved oxygen (DO), chemical oxygen demand (COD), and nutrients (PO (4) (3-) , NO3-N, and SO (4) (2-) ) were measured higher in pre-monsoon, whereas concentration of Cu, Mn, Cr, Co, Pb, Cd, K, Na, Mg, Li, Cl-, and NH4-N were recorded higher in post-monsoon. Results highlighted serious metal pollution of surface water. Mean concentration of Zn, Cd, Ni, Cu, Fe, Cr, and Pb in both seasons and Mn in post-monsoon were well above the permissible level of surface water quality criteria. Results stress the dire need to reduce heavy-metal input into the lake basin and suggest that heavy-metal contamination should be considered as an integral part of future planning and management strategies for restoration of water quality of the lake reservoir.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available