4.2 Article

Experimental and large eddy simulation study of the flow developed by a sequence of lateral obstacles

Journal

ENVIRONMENTAL FLUID MECHANICS
Volume 14, Issue 4, Pages 873-893

Publisher

SPRINGER
DOI: 10.1007/s10652-013-9328-x

Keywords

Dead zones; Particle image velocimetry; Large eddy simulation; Shallow flow; Groyne fields

Ask authors/readers for more resources

In this paper we provide a description of the three-dimensional flow induced by a sequence of lateral obstacles in a straight shallow open-channel flow with flat bathymetry. The obstacles are modelled as rectangular blocks and are located at one channel wall, perpendicular to the main stream direction. Two aspect ratios of the resulting dead zones are analysed. The flow structure is experimentally characterised by particle image velocimetry measurements in a laboratory flume and simulated using three-dimensional Large Eddy Simulations. Good agreement between experimental measurements and numerical results is obtained. The results show that the effect of the obstacles in the main channel is observed up to one obstacle length in the spanwise direction. The spacing between obstacles does not seem to have a large influence in the outer flow. The mean flow within the dead zone is characterised by a large recirculation region and several additional vortex systems. They are discussed in the paper, as well as the mean and root-mean-square wall shear-stresses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available