4.4 Article

Differential Host-Finding Abilities by a Weed Biocontrol Insect Create Within-Patch Spatial Refuges for Nontarget Plants

Journal

ENVIRONMENTAL ENTOMOLOGY
Volume 43, Issue 5, Pages 1333-1344

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1603/EN14041

Keywords

weed biocontrol; mark-release-recapture; nontarget herbivory; spatial refuge; with-in-patch scale

Categories

Funding

  1. Agriculture and Agri-Food Canada
  2. Cattle Industry Development Council of British Columbia
  3. Natural Sciences and Engineering Research Council of Canada (NSERC)
  4. NSERC Canada Graduate Scholarship
  5. Wyoming Biocontrol Steering Committee
  6. British Columbia Ministry of Forests, Lands and Natural Resource Operations

Ask authors/readers for more resources

Many modern weed biocontrol insects exhibit transient spillover nontarget herbivory when and where insects are in high density, such as following biocontrol releases, or around dense target weed infestations. Understanding spatial patterns of herbivory is important for predicting efficacy and safety of biocontrol, as refuges from herbivory can buffer plants from population-level impacts. Here, we demonstrate that differential host-finding and arrestment behaviors by an oligophagous biocontrol insect lead to spatial refuges from nontarget herbivory around insect release points within mixed patches of target and nontarget plants. We created transient insect outbreaks by releasing large numbers of Mogulones crucifer Pallas (Coleoptera: Curculionidae) into naturally occurring rangeland patches of the nontarget plant Hackelia micrantha (Eastwood) J.L. Gentry with varying densities of its target weed Cynoglossum officinale L., and monitored spatial patterns of herbivory around release points after 4-7 wk. In complement, we conducted a mark-release-recapture (MRR) experiment to compare M. crucifer's target and nontarget host-finding and arrestment behaviors. For rangeland releases, 95% of nontarget herbivory occurred within 4.25 m of release points, independent of target plant density. Target herbivory occurred throughout our evaluation radii (up to 14 m), where maximum density of diffusing M. crucifer was 1/10 of that in the nontarget herbivory radius. In the MRR experiment, more weevils were recaptured on C. officinale (but not H. micrantha) than expected by chance. M. crucifer's lack of specialized nontarget host-finding and arrestment behaviors means that spatial refuges from herbivory are created for H. micrantha just meters away from sources of high weevil density.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available