4.6 Article

Nitrate in groundwater and the unsaturated zone in (semi)arid northern China: baseline and factors controlling its transport and fate

Journal

ENVIRONMENTAL EARTH SCIENCES
Volume 70, Issue 1, Pages 145-156

Publisher

SPRINGER
DOI: 10.1007/s12665-012-2111-3

Keywords

Unsaturated zone profile; Nitrate; Arid area; Northern China; Baseline quality; Time lag

Funding

  1. National Natural Science Foundation of China [40872162, 41202183]
  2. China Postdoctoral Science Foundation [2012T50136, 20110490581]

Ask authors/readers for more resources

Knowledge of the baseline of groundwater nitrate is essential for water quality management. As large-scale anthropogenic activities, especially utilization of chemical fertilizers began from the 1950s in most countries, such as China, the baseline of groundwater nitrate can be determined from pre-modern water using tritium and statistical analysis. In the (semi)arid northern China, the median values of nitrate baseline for the three large regions (Tarim river basin, TRB; Loess Plateau of China, LPC; North China Plain, NCP) range from 2 to 9 mg/L (as NO3). Several main factors control nitrate content in the unsaturated zone moisture and in groundwater, e.g., nitrate input, sediment moisture movement (direction and rate), and depth of water table at the macroscopic scale in (semi)arid areas, where nitrate loss by denitrification can be limited. Sixteen unsaturated zone profiles (638 sediment samples in total) with depths ranging from 5 to 18.25 m were sampled to demonstrate how those factors affect groundwater nitrate. As sediment moisture moves upward from the water table in the TRB case, a large inventory of nitrate in the unsaturated zone with evapo-transpired origin would never enter groundwater and groundwater nitrate contents remain at the baseline level. On the contrary, in the LPC and NCP, nitrate from fertilizers may pass through the unsaturated zone and eventually reach the water table to pollute groundwater. It is also noticed that there is a time lag between land-use change and groundwater quality response, due to the buffering capacity of the thick unsaturated zone, to which attention should be paid regarding water quality management.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available