4.6 Article

Simulation of DNAPL infiltration and spreading behaviour in the saturated zone at varying flow velocities and alternating subsurface geometries

Journal

ENVIRONMENTAL EARTH SCIENCES
Volume 65, Issue 4, Pages 1119-1131

Publisher

SPRINGER
DOI: 10.1007/s12665-011-1361-9

Keywords

DNAPL; Source zone architecture; Groundwater flow velocities; TMVOC; Modelling

Funding

  1. European Union [213161]

Ask authors/readers for more resources

The influence of varying groundwater flow velocities on DNAPL infiltration and spreading behaviour was investigated by multiphase modelling using TMVOC and PetraSim. The multiphase models were calibrated by results of previously conducted laboratory experiments for the complete spatio-temporal range of the experiments. The small scale 2D scenario modelling was applied to qualify and quantify changes in position, architecture, geometry and dissolution of a TCE body in a fully saturated homogeneous sandy medium. The applied flow velocities ranging from 0.05 up to 40.00 m/day exhibited that the DNAPL TCE is affected even at the lowest flow velocity in its position, its size and its architecture. Additionally, several impermeable lenses with simple geometry were assumed in the model, to investigate the influence of stratified subsoil. In the experimental set-ups, the DNAPL body reacts more sensitive to the applied groundwater flow velocities than to the geometrical set-up of the scenarios. A possible consequence can be the transportation and displacement of a DNAPL pool due to natural or anthropogenic induced high groundwater flow velocities, as by Pump and Treat facilities, complicating site investigation process and planning of remediation activities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available