4.6 Article

Suspended sediments in the Kharaa River catchment (Mongolia) and its impact on hyporheic zone functions

Journal

ENVIRONMENTAL EARTH SCIENCES
Volume 65, Issue 5, Pages 1535-1546

Publisher

SPRINGER
DOI: 10.1007/s12665-011-1198-2

Keywords

Suspended sediments; Erosion; Fingerprinting technique; Hyporheic zone; Clogging

Funding

  1. Federal Ministry for Education and Research [02WM1027]
  2. Helmholtz Interdisciplinary Graduate School for Environmental Research (HIGRADE)

Ask authors/readers for more resources

A previous study investigating the ecological status of the Kharaa River in Northern Mongolia reported fine-grained sediments as being a major stress factor causing adverse impacts on the benthic ecology. However, the source of these sediments within the catchment as well as the specific impact on hyporheic zone functions in the Kharaa River remained unclear. Therefore, the objective of the current study was to investigate the underlying source-receptor system and implement an integrated monitoring approach. Suspended sediment sources within the Kharaa catchment were identified by using extensive spatially distributed sediment sampling and geochemical and isotope fingerprinting methods. On the receptor side, the ecological implications across a gradient of fine-grained sediment influx were analyzed using a distinct hyporheic zone monitoring scheme at three representative river reaches along the Kharaa River. Results of suspended sediment source monitoring show that during snowmelt runoff, riverbank and gully erosion were the dominant sources. During the summer period, upland erosion contributed a substantial share of suspended sediment. Fine-grained sediment influx proved to be the cause of habitat loss in the hyporheic zone and benthic oxygen production limitation. This combined catchment and in-stream monitoring approach will allow for a better understanding and spatially explicit analysis of the interactions of suspended sediment transport and hyporheic zone functioning. This information has built the basis for a coupled modeling framework that will help to develop efficient management measures within the Kharaa River basin with special emphasis on rapidly changing land-use and climatic conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available