4.6 Article

Debris slope stability analysis using three-dimensional finite element method based on maximum shear stress theory

Journal

ENVIRONMENTAL EARTH SCIENCES
Volume 64, Issue 8, Pages 2215-2222

Publisher

SPRINGER
DOI: 10.1007/s12665-011-1049-1

Keywords

Debris slope; Stability evaluation; 3D finite element contact algorithm; Maximum shear stress theory; Spatial effect

Funding

  1. National Natural Science Foundation of China [40872179, 40502026, 40372118]
  2. Shanghai Leading Academic Discipline Project [B308]

Ask authors/readers for more resources

How to evaluate debris slope stability reasonably is yet an urgent problem. The paper presents an applied method evaluating debris slope stability, using three-dimensional (3D) finite element contact algorithm based on the maximum shear stress theory. The Guanjia debris slope is located between K9 + 940 and K10 + 200 of Longli First-class Highway in Zhejiang, China. On its left slope, some cracks appeared at the end of 2002 and these were immediately backfilled, overlying a plastic membrane. However, many new cracks appeared on the slope during the rainfall in April 2003. Meanwhile, some small collapses and springs occurred in the front of the slope, and many cracks appeared on the middle part. The stability of the Guanjia debris slope was analyzed using the method proposed in the paper, the strength reduction finite element method, the imbalance thrust force method, Fellenius method, Janbu simplified method, Spencer's method, Morgenstern-Price method and generalized limit equilibrium (GLE) method. The results show that: (1) the safety factors of the debris slope obtained using the imbalance thrust force method is the minimum in all limit equilibrium methods; (2) 1.07 and 1.06 are the safety factors of Section CC' and DD' (the middle part of this slope) of the Guanjia debris slope obtained using the method proposed (FEM with shear strength reduction technique based on the maximum shear stress theory) in this study, respectively, which reflect the slope actual condition in critical failure status; (3) the method proposed in this study may take into account the spatial effect of the debris slope, which makes the results of slope stability analysis more reasonable and reliable than other methods that can be used as a reference for the evaluation of stability of the same type of debris slope; and (3) further study should be done to confirm whether the proposed method in this study is suitable for other types of slopes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available