4.6 Article

The research of groundwater flow model in Ejina Basin, Northwestern China

Journal

ENVIRONMENTAL EARTH SCIENCES
Volume 60, Issue 5, Pages 953-963

Publisher

SPRINGER
DOI: 10.1007/s12665-009-0231-1

Keywords

Groundwater flow model; Ejina Basin; Modflow; Heihe River

Funding

  1. National Natural Science Funds for Distinguished Young Scholar [1140725001]
  2. National Natural Science Foundation of China [40671010]

Ask authors/readers for more resources

Water resources is a primary controlling factor for economical development and ecological environmental protection in the inland river basins of arid western China. Groundwater, as the important component of total water resources, plays a dominant role in the development of western China. In recent years, with the utilization ratio of surface water raised, the groundwater recharge rate has been reduced by surface water, and groundwater was exploited on a large-scale. This has led to the decline of groundwater levels and the degradation of eco-environments in the lower reaches of Heihe watershed, especially. Therefore, the study on the groundwater-level change in recent years, as well as simulating and predicting groundwater levels changes in the future is very significant to improve the ecological environment of the Heihe River Basin, coordinate the water contradiction, and allocate the water resources. The purpose of this study is to analyze the groundwater-level variations of the Ejina region basin on a large-scale, to develop and evaluate a conceptual groundwater model in Ejina Basin; according to the experimental observation data, to establish the groundwater flow model combining MODFLOW and GIS Software; simulated the regional hydrologic regime in recent 10 years and compared with various delivery scenarios from midstream; determined which one would be the best plan for maintaining and recovering the groundwater levels and increasing the area of Ejina Oasis. Finally, this paper discusses the possible vegetation changes of Ejina Basin in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available