4.5 Article

The degradation of arsenoribosides from Ecklonia radiata tissues decomposed in natural and microbially manipulated microcosms

Journal

ENVIRONMENTAL CHEMISTRY
Volume 11, Issue 3, Pages 289-300

Publisher

CSIRO PUBLISHING
DOI: 10.1071/EN13155

Keywords

algal decomposition; arsenic cycling; macro-algae; microbial ecology

Ask authors/readers for more resources

We investigated the influence of microbial communities on the degradation of arsenoribosides from E. radiata tissues decomposing in sand and seawater-based microcosms. During the first 30 days, arsenic was released from decomposing E. radiata tissues into seawater and sand porewaters in all microcosms. In microcosms containing autoclaved seawater and autoclaved sand, arsenic was shown to persist in soluble forms at concentrations (9-18 mu g per microcosm) far higher than those present initially (similar to 3 mg per microcosm). Arsenoribosides were lost from decomposing E. radiata tissues in all microcosms with previously established arsenoriboside degradation products, such as thio-arsenic species, dimethylarsinoylethanol (DMAE), dimethylarsenate (DMA) and arsenate (As-V) observed in all microcosms. DMAE and DMA persisted in the seawater and sand porewaters of microcosms containing autoclaved seawater and autoclaved sand. This suggests that the degradation step from arsenoribosides -> DMAEoccurs on algal surfaces, whereas the step from DMAE -> As-V occurs predominantly in the water-column or sand-sediments. This study also demonstrates that disruptions to microbial connectivity (defined as the ability of microbes to recolonise vacant habitats) result in alterations to arsenic cycling. Thus, the re-cycling of arsenoribosides released from marine macro-algae is driven by microbial complexity plus microbial connectivity rather than species diversity as such, as previously assumed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available