4.5 Article

Chemical characterisation of humic-like substances from urban, rural and tropical biomass burning environments using liquid chromatography with UV/vis photodiode array detection and electrospray ionisation mass spectrometry

Journal

ENVIRONMENTAL CHEMISTRY
Volume 9, Issue 3, Pages 273-284

Publisher

CSIRO PUBLISHING
DOI: 10.1071/EN11163

Keywords

alpha-pinene; secondary organic aerosol; tracer; volatile organic compound

Funding

  1. Belgian Federal Science Policy Office [SD/AT/02, SD/CS/05A]
  2. Research Foundation-Flanders (FWO)
  3. Universitiy of Antwerp
  4. Universitiy of Ghent
  5. [K84091]

Ask authors/readers for more resources

Humic-like substances (HULIS) are ubiquitously present in the troposphere and make up a major fraction of continental fine-sized water-soluble organic compounds. They are regarded as material with strong polar, acidic and chromophoric properties; however, structural information at the individual component level is rather limited. In the present study, we have characterised HULIS from different locations using liquid chromatography coupled to photodiode array detection and negative ion electrospray ionisation mass spectrometry. Aerosol samples with particles less than 2.5 mu mm in diameter (PM2.5) were collected in Budapest and K-puszta, Hungary, during 2007 and 2008 spring and summer periods, and in Rondonia, Brazil, during a 2002 biomass burning experiment. Major components of the Budapest 2007 and Brazil 2002 HULIS corresponded to chromophoric substances, of which 4-nitrocatechol (molecular weight (MW) 155) was identified as the most abundant organic species and less abundant ones were attributed to mono-and dimethyl nitrocatechols (MWs 169 and 183). The mass concentrations of 4-nitrocatechol in the water-soluble organic carbon (WSOC) of the Budapest 2007 and day-and night-time Brazil 2002 HULIS were 0.46, 0.50 and 1.80 %. Abundant components of K-puszta 2008 HULIS were assigned to alpha-pinene secondary organic aerosol (SOA) tracers, i.e. 3-methyl-1,2,3-butanetricarboxylic acid and terpenylic acid; their mass concentrations in the HULIS WSOC were 0.75 and 0.40 %. Tere- and ortho-phthalic acids (MW 166) were major components of the Budapest and K-puszta HULIS, but only minor ones of the Brazil 2002 biomass burning HULIS, consistent with a source that is different from biomass burning and likely related to open waste burning of phthalate ester-containing material such as plastic.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available