4.2 Article

Habitat simplification increases the impact of a freshwater invasive fish

Journal

ENVIRONMENTAL BIOLOGY OF FISHES
Volume 98, Issue 2, Pages 477-486

Publisher

SPRINGER
DOI: 10.1007/s10641-014-0278-z

Keywords

Habitat complexity; Invasive species; Functional response; Impact; Global change; Freshwater fish

Funding

  1. DST-NRF Centre of Excellence for Invasion Biology
  2. National Research Foundation [85,417]
  3. NERC
  4. Leverhulme Trust

Ask authors/readers for more resources

Biodiversity continues to decline at a range of spatial scales and there is an urgent requirement to understand how multiple drivers interact in causing such declines. Further, we require methodologies that can facilitate predictions of the effects of such drivers in the future. Habitat degradation and biological invasions are two of the most important threats to biodiversity and here we investigate their combined effects, both in terms of understanding and predicting impacts on native species. The predatory largemouth bass Micropterus salmoides is one of the World's Worst Invaders, causing declines in native prey species, and its introduction often coincides with habitat simplification. We investigated the predatory functional response, as a measure of ecological impact, of juvenile largemouth bass in artificial vegetation over a range of habitat complexities (high, intermediate, low and zero). Prey, the female guppy Poecilia reticulata, were representative of native fish. As habitats became less complex, significantly more prey were consumed, since, even although attack rates declined, reduced handling times resulted in higher maximum feeding rates by bass. At all levels of habitat complexity, bass exhibited potentially population de-stabilising Type II functional responses, with no emergence of more stabilising Type III functional responses as often occurs in predator-prey relationships in complex habitats. Thus, habitat degradation and simplification potentially exacerbate the impact of this invasive species, but even highly complex habitats may ultimately not protect native species. The utilisation of functional responses under varying environmental contexts provides a method for the understanding and prediction of invasive species impacts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available