4.2 Article

Epigenetic responses following maternal dietary exposure to physiologically relevant levels of bisphenol A

Journal

ENVIRONMENTAL AND MOLECULAR MUTAGENESIS
Volume 53, Issue 5, Pages 334-342

Publisher

WILEY
DOI: 10.1002/em.21692

Keywords

epigenetics; DNA methylation; bisphenol A; viable yellow agouti (A vy) mouse; developmental origins of disease

Funding

  1. NIH [ES017524]
  2. University of Michigan National Institutes of Environmental Health Sciences (NIEHS) Core Center [P30 ES017885]
  3. Institutional Training Grant [T32 ES007062]
  4. University of Washington Birth Defects Research Laboratory [R24 HD000836-47]

Ask authors/readers for more resources

Animal studies have linked perinatal bisphenol A (BPA) exposure to altered DNA methylation, but little attention is given to analyzing multiple physiologically relevant doses. Utilizing the viable yellow agouti (Avy) mouse, we examine the effects of developmental exposure through maternal diet to 50 ng BPA/kg (n = 14 litters), 50 mu g BPA/kg (n = 9 litters), or 50 mg BPA/kg (n = 13 litters) on global and candidate gene methylation at postnatal day 22. Global methylation analysis reveals hypermethylation in tail tissue of a/a and Avy/a offspring across all dose groups compared with controls (n = 11 litters; P < 0.02). Analysis of coat color phenotype replicates previous work showing that the distribution of 50 mg BPA/kg Avy/a offspring shifts toward yellow (P = 0.006) by decreasing DNA methylation in the retrotransposon upstream of the Agouti gene (P = 0.03). Maternal exposure to 50 mu g or 50 ng BPA/kg, however, results in altered coat color distributions in comparison with control (P = 0.04 and 0.02), but no DNA methylation effects at the Agouti gene are noted. DNA methylation at the CDK5 activator-binding protein (CabpIAP) metastable epiallele shows hypermethylation in the 50 mu g BPA/kg offspring, compared with controls (P = 0.02). Comparison of exposed mouse liver BPA levels to human fetal liver BPA levels indicates that the three experimental exposures are physiologically relevant. Thus, perinatal BPA exposure affects offspring phenotype and epigenetic regulation across multiple doses, indicating the need to evaluate dose effects in human clinical and population studies. Environ. Mol. Mutagen. 2012. (C) 2012 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available