4.7 Article

Organic acids are not specifically involved in the nitrate-enhanced Zn hyperaccumulation mechanism in Noccaea caerulescens

Journal

ENVIRONMENTAL AND EXPERIMENTAL BOTANY
Volume 91, Issue -, Pages 12-21

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envexpbot.2013.02.006

Keywords

Citric acid; Malic acid; Metabolomics; Nitrogen nutrition; pH; Phytoremediation

Funding

  1. Australian Research Council Linkage Project [LP100100800]

Ask authors/readers for more resources

Nitrogen form has been shown to affect Zn uptake, translocation and storage in the Zn-hyperaccumulating plant Noccaea caerulescens but the biochemical processes are not fully understood. Organic acids and amino acids have been implicated in Zn transport and storage. This study aimed to examine the effect of N form on concentrations of organic acids and amino acids and how these metabolites correlated with Zn hyperaccumulation. Plants were grown in nutrient solution with NO3-, NH4NO3 or NH4+, supplied with 50 or 300 mu M Zn, and buffered at either pH 4.5 or 6.5. The metabolomic profile was determined by gas chromatography mass spectroscopy. The concentration of Zn in shoots, xylem and roots was greatest for the NO3-, pH 6.5 and 300 mu M Zn treatments. For all N forms, the lower growth-medium pH raised xylem sap pH but had no influence on Zn concentration or exudation rate of the xylem sap. Nitrate enhanced organic acid production while NH4+ increased amino acid production. Organic acids in the xylem were more responsive to changes in growth-medium pH than N form, and did not correlate with Zn concentration in shoots, roots or xylem. Serine might be directly involved in Zn hyperaccumulation. Phosphoric acid was associated with reduced Zn accumulation in the shoots. Malic acid was not detected in the shoots but responded to cation uptake more than to Zn specifically in the roots. Citric acid responded to cation uptake more than to Zn specifically in the shoots but did not correlate with Zn concentration in the roots or the xylem sap, or any other cations in the roots. In conclusion, organic acids in N. caerulescens are not specifically involved in Zn hyperaccumulation but are involved in regulating pH in the xylem and cation-anion balance in plants. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available