4.7 Article

Separation of CO2 by single and mixed aqueous amine solvents in membrane contactors: fluid flow and mass transfer modeling

Journal

ENGINEERING WITH COMPUTERS
Volume 28, Issue 2, Pages 189-198

Publisher

SPRINGER
DOI: 10.1007/s00366-011-0237-7

Keywords

Gas separation; Membrane contactor; CFD; Numerical simulation; Mass transfer

Ask authors/readers for more resources

Removal of carbon dioxide from gas mixtures is of vital importance for the control of greenhouse gas emission. This study presents a numerical simulation using computational fluid dynamics of mass and momentum transfer in hollow-fiber membrane contactors. The simulation was conducted for physical and chemical absorption of CO2. A mass transfer model was developed to study CO2 transport through hollow-fiber membrane contactors. The model considers axial and radial diffusions in the contactor. It also considers convection in the tube and shell side with chemical reaction. The model equations were solved by numerical method based on finite element method. Moreover, the simulation results were validated with the experimental data obtained from literature for absorption of CO2 in amine aqueous solutions as solvent. The simulation results were in good agreement with the experimental data for different values of gas and liquid velocities. The simulation results indicated that the removal of CO2 increased with increasing liquid velocity in the tube side. Simulation results also showed that hollow-fiber membrane contactors have a great potential in the area of gas separation specially CO2 separation from gas mixtures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available