4.7 Article

Punching shear strength of steel fibre reinforced concrete slabs

Journal

ENGINEERING STRUCTURES
Volume 40, Issue -, Pages 83-94

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.engstruct.2012.02.009

Keywords

Punching; Fibre reinforced concrete; Critical shear crack theory; Variable Engagement Model; Design models

Ask authors/readers for more resources

The ultimate strength of reinforced concrete slabs is frequently governed by the punching shear capacity, which may be increased with addition of traditional fitments such as reinforcing steel, headed studs or shear heads. In addition to these traditional methods of strengthening against punching, steel fibre reinforcement has proved to be an effective and viable alternative. The addition of fibres into the concrete improves not only the shear behaviour but also the deformation capacity of reinforced concrete slabs. This paper presents a mechanical model for predicting the punching strength and behaviour of concrete slabs reinforced with steel fibres as well as conventional reinforcement. The proposed model is validated against a wide number of available experimental data and its accuracy is verified. On this basis, a simple design equation for the punching shear capacity of steel fibre reinforced concrete (SFRC) slabs is proposed. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available