4.7 Article

Probabilistic characterization of Young's modulus of soil using equivalent samples

Journal

ENGINEERING GEOLOGY
Volume 159, Issue -, Pages 106-118

Publisher

ELSEVIER
DOI: 10.1016/j.enggeo.2013.03.017

Keywords

Bayesian approach; Uncertainty; Markov Chain Monte Carlo Simulation; Prior knowledge; Site investigation

Funding

  1. Research Grants Council of the Hong Kong Special Administrative Region, China [9041550 (CityU 110210)]
  2. City University of Hong Kong [7002838]

Ask authors/readers for more resources

Several probability-based design codes (e.g., load and resistance factor design (LRFD) codes and Eurocode 7) have been developed and implemented around the world recently. A characteristic (or nominal) value of soil/rock properties is used in these design codes, and it is typically defined as a pre-specified quantile (e.g., mean or lower 5% quantile) of the statistical distribution of the soil properties. This poses a challenge in the implementation of the design codes, because the number of soil/rock property data obtained during site investigation is generally too sparse to generate meaningful statistics, rendering proper selection of the characteristic value a very difficult task. This paper aims to address this challenge by developing a Markov Chain Monte Carlo Simulation (MCMCS)-based approach for probabilistic characterization of undrained Young's modulus, E-u, of clay using standard penetration tests (SPT). Prior knowledge (e.g., previous engineering experience) and project-specific test data (e.g., SPT test data) are integrated probabilistically under a Bayesian framework and transformed into a large number, as many as needed, of equivalent samples of E-u. Subsequently, conventional statistical analysis is carried out to estimate statistics of E-u, and the characteristic value of the soil property is selected accordingly. Equations are derived for the proposed approach, and it is illustrated and validated using real SPT and pressuremeter test data at the clay site of the US National Geotechnical Experimentation Sites (NGES) at Texas A&M University. (c) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available