4.7 Article

Bayesian approach for probabilistic characterization of sand friction angles

Journal

ENGINEERING GEOLOGY
Volume 114, Issue 3-4, Pages 354-363

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.enggeo.2010.05.013

Keywords

Bayesian approach; Effective friction angle; Cone penetration tests; Probabilistic site characterization; Spatial variability; Random field

Funding

  1. Research Grants Council of the Hong Kong Special Administrative Region, China [9041260, CityU 121307]

Ask authors/readers for more resources

Site characterization is a unique problem of geotechnical engineering that utilizes both prior information (including engineering judgment) and project-specific information from test borings, in-situ testing, and/or laboratory testing. The problem is further complicated by inherent spatial variability of geo-materials and the fact that only a small portion of geo-materials are examined during site characterization. This paper describes a Bayesian approach to integrate prior information and project-specific test results for probabilistic characterization of soil properties from a limited number of tests. The Bayesian framework is developed in conjunction with cone penetration tests to estimate the sand effective friction angle and with random field theory to model the inherent spatial variability. Posterior distributions of uncertain parameters are derived. An approximate method is used to by-pass multi-dimensional integration involved in obtaining the marginal distributions, while removing the need of using traditional conjugate prior distributions. Using conditional variance formula, it is shown analytically that the posterior variance of the friction angle arises from three sources, namely, the spatial variability (aleatory) and its uncertainty (epistemic) as well as the uncertainty in the mean value. This provides a means to determine whether the amount of project-specific information (e.g., in-situ and/or laboratory tests) is sufficient in site characterization. Analytical solutions are also derived for two asymptotic cases of posterior mean, which can be used as reference cases for checking the results from the Bayesian approach. The Bayesian approach is illustrated through a set of real results of cone penetration tests at a National Geotechnical Experimental Site in the USA. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available