4.7 Article

Failure analysis of wind turbine blade under critical wind loads

Journal

ENGINEERING FAILURE ANALYSIS
Volume 27, Issue -, Pages 99-118

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engfailanal.2012.08.002

Keywords

Wind power; Turbine blade damage; Structural analysis; Hazard simulation; Risk management

Ask authors/readers for more resources

Issues such as energy security, sustainable development, and environmental protection have been a major topic of international discussions in recent years. Developed countries worldwide are investing substantial sums to develop renewable energy systems. In addition to this trend, wind power generation has revealed potential as a major energy source in Taiwan. However, an accident occurred just as the government and private enterprises began heavily promoting the construction of wind power generators. On September 28, 2008, five large wind turbines (WTs) located in the Changhua Coastal Industrial Park in Taichung sustained blade damage from fierce winds and heavy rainfall brought by Typhoon jangmi. To examine the causes of this damage, specifically, delamination and cracking in the WT blades, this study first reviewed and analyzed data in related engineering documents. Similar overseas cases were also reviewed to identify the common causes of turbine blade failure incidents. The structural mechanics of WT blades were then analyzed with behavioral models to identify the mechanisms of the damage. Hopefully, the analytical results of this study can help prevent similar engineering incidents in the future and provide a reference for stakeholders devising strategies for improving risk management and disaster prevention in wind power plants. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available