4.7 Article

Dynamical systems identification using Gaussian process models with incorporated local models

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engappai.2010.10.010

Keywords

Nonlinear system identification; Gaussian processes model; Local models network; Off-equilibrium dynamics; Linear system identification; Prediction confidence; Two tank system

Funding

  1. Ministry of Higher Education, Science and Technology [P2-0001]

Ask authors/readers for more resources

Gaussian process (GP) models form an emerging methodology for modelling nonlinear dynamic systems which tries to overcome certain limitations inherent to traditional methods such as e.g. neural networks (ANN) or local model networks (LMN). The GP model seems promising for three reasons. First, less training parameters are needed to parameterize the model. Second, the variance of the model's output depending on data positioning is obtained. Third, prior knowledge, e.g. in the form of linear local models can be included into the model. In this paper the focus is on GP with incorporated local models as the approach which could replace local models network. Much of the effort up to now has been spent on the development of the methodology of the GP model with included local models, while no application and practical validation has yet been carried out. The aim of this paper is therefore twofold. The first aim is to present the methodology of the GP model identification with emphasis on the inclusion of the prior knowledge in the form of linear local models. The second aim is to demonstrate practically the use of the method on two higher order dynamical systems, one based on simulation and one based on measurement data. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available