4.7 Article

A hybrid genetic algorithm for mixed model assembly line balancing problem with parallel workstations and zoning constraints

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engappai.2010.08.006

Keywords

Mixed-model assembly line balancing problem; Genetic algorithm; Hybrid; Parallel workstation assignment; Zoning constraints

Ask authors/readers for more resources

In this paper, we propose a hybrid genetic algorithm to solve mixed model assembly line balancing problem of type I (MMALBP-I). There are three objectives to be achieved: to minimize the number of workstations, maximize the workload smoothness between workstations, and maximize the workload smoothness within workstations. The proposed approach is able to address some particular features of the problem such as parallel workstations and zoning constraints. The genetic algorithm may lack the capability of exploring the solution space effectively. We aim to improve its exploring capability by sequentially hybridizing the three well known heuristics, Kilbridge & Wester Heuristic, Phase-I of Moodie & Young Method, and Ranked Positional Weight Technique, with genetic algorithm. The proposed hybrid genetic algorithm is tested on 20 representatives MMALBP-I and the results are compared with those of other algorithms. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available